Pyrolysis of 1-Iodopropane by the Variable Encounter Method F. C.; Wolters, K.-J. Chao. and B. S./ Rabinovitch Department of Chemistry BG-10 University of Washington Seattle, WA 98195 Technical Report No. NR092-549-TR21 Contract N00014-75-C-0690 NR-092-549 August 1, 1981 Prepared for Publication in the International Journal of Chemical Kinetics OFFICE OF NAVAL RESEARCH Department of the Navy Code 473 800 N. Quincy Arlington, VA 22217 Reproduction in whole or in part is permitted for any purpose of the United State Government. This document has been approved for public release; its distribution is unlimited. 81 8 18 189 TE FILE COPY SECURITY CLASSIFICATION OF THIS PAGE When Data Fatere II | REPORT DOCUMENTATION PAGE | BEFORE COMPLETING FORM | |---|--| | 1 REPORT NUMBER . GOVT ACCESSION NO. | 3 RECIPIENT'S CATALOW NUMBER | | NR092-549-TR21 $AD-A/O3$ | 039 | | 4 TITLE (and Saldrifes | 5 TYPE OF REPORT & PERIOD COVERED | | Pyrolysis of 1-Iodopropane by the Variable | Technical | | Encounter Method | | | | 6 PERFORMING ORG. REPORT NUMBER | | 7 AUTHORIS | 8 CONTRACT OR GRANT NUMBER(a) | | | | | F. C. Wolters, KJ. Chao, and B. S. Rabinovitch | 1 | | | NR 092-549 | | 9 PERFORMING ONGANICATION NAME AND ADDRESS | 16 PROGHAM ELEMENT PROJECT TASK | | Professor B. S. Rabinovitch | AREA & WORK UNIT NUMBERS | | Department of Chemistry BG-10
University of Washington | | | Seattle, WA 98195 | | | Office of Naval Research, Code 743 | 12 REPORT DATE | | Office of Naval Research, Code 743 Department of the Navy | August 1, 1981 | | 800 N. Quincy | 13 NUMBER OF PAGES | | Arlington, VA 2221/ | 14 | | 14 MONITORING AGENCY NAME & AUDRESS, If different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | | H - 1 | | | Unclassified 15a DECLASSIFICATION DOWNGRADING | | | SCHEDULE | | 16 DISTRIBUTION STATEMENT (of this Report) | | | This document has been approved for public role | aca: ita distribution | | This document has been approved for public releation is unlimited. | ase; its distribution | | 15 uni ini tea. | | | | | | | | | 17 DISTRIBUTION STATEMENT for the obstruct entered in Block 20, If different to | on Kepart) | | | | | | | | | | | 18 SUPPLEMENTARY NOTE'S | | | | | | Prepared for publication in Intern. J. Chem. Ki | netics | | | | | | | | 19 KEY WORLDS (Continue on reverse side if necessary and identify by block number |) | | Accommodation Polarmolecule | | | Collisional Single Collision | | | Energy Transfer Surfaces Gases Unimolecular Reaction | | | | | | Iodopropane Vibrational Relaxation AUSTRACT CONTINUE OF TOWARD AND INCOME. | | | The pyrolysis of 1-iodopropane has been stu- | | | Method (VEM) at temperatures from 625 K to 840 K. | | | | | | l – sions are tound to be stronger tor this molecule | | | sions are found to be stronger for this molecule | | | hydrocarbons previously studied in the same temp | erature range. Energy trans- | | | erature range. Energy trans-
all temperature. The results | DD (FERM), 1473 Pyrolysis of 1-Iodopropane by the Variable Encounter Method* F. C. Wolters, K.-J. Chao and B. S. Rabinovitch Department of Chemistry BG-10 University of Washington, Seattle, Washington 98195 ### Abstract The pyrolysis of 1-iodopropane has been studied by the Variable Encounter Method (VEM) at temperatures from 625 K to 840 K. Deactivating wall collisions are found to be stronger for this molecule than for the hydrocarbons previously studied in this temperature range. The results of this study are compared with earlier steady-state work. ^{*} Work supported by the Office of Naval Research [†] Present address: Clorox Company, Pleasanton, California $^{^{\}ddagger}$ Sabbatical Visitor. Permanent address: Tsing Hua University, Taiwan, NRC #### Introduction The pyrolysis of 1-iodopropane has recently been the subject of a number of VLPP studies. $^{1-3}$ The mechanism of the decomposition has been discussed in detail by these earlier workers. The molecule decomposes by two channels whose critical reaction thresholds, $E_{_{\rm O}}$, differ by 4.3 kcal mole⁻¹: $$C_3H_7I \xrightarrow{k_1} C_3H_6 + HI$$ (E_o = 48.5 kcal mole⁻¹) (1) $$C_3H_7I \xrightarrow{k_2} C_3H_7 + I \longrightarrow C_2H_4 + CH_3 + 1 \quad (E_0 = 52.8 \text{ kcal mole}^{-1})$$ (2) In reaction (2), the first step is rate determining. This chemical system is an attractive one for study by the Variable Encounter Method (VEM) because it affords an opportunity for comparison of our results in the transient region with those obtained in steady state VLPP studies. Moreover, this molecule is the first polar one to be studied by the VEM technique. Information is desirable concerning the dependence of the energy transfer process between molecules and the wall upon this parameter. In this paper we report the study of the pyrolysis of 1-iodopropane in a VEM system at temperatures from 625 K to 840 K. Unfortunately, the system seems to be not as clean as we had hoped originally. #### Experimental The experimental apparatus was similar to that used in previous VEM studies. 4,5 Reactor fingers with mean numbers of collisions, m, of 5.9 and 17.5 were used; these were described in ref. 5. Reproducible results (within the precision of the experiments) were obtained after "seasoning" the reactors for several hours. The resulting seasoned surface deteriorated with time when standing under vacuum (unlike our experience with hydrocarbon substrates 4,5), or when the system was pumped for long periods, suggesting that the seasoning film itself was either being slowly pyrolyzed or had an appreciable vapor pressure. Matheson-Coleman 1-iodopropane containing no detectible impurities was thoroughly degassed prior to use. Experiments varied in duration from one minute to several hours, depending on experimental conditions. The reaction was allowed to proceed usually from 1 to 30 per cent completion, and an aliquot was then taken. The products were analyzed by gas chromatography with fid detection. Separation of 1-iodopropane from its hydrocarbon reaction products was made on a 12 inch x 3/16 inch packed column consisting of 15% squalane on 45-60 mesh Chromosorb P. The reaction products were separated on a 6.5 foot x 3/16 inch column having the same packing. Control of the Contro In order to check for possible secondary reactions involving the radicals produced by reaction (2), a series of experiments was performed with <u>trans-2-betene</u> added as a getter. The ratio of iodopropane to butene was varied between 0.1 to 0.2. ### Results and Calculations Experimentally determined values of the mean probability of reaction per collision, $\tilde{P}_{C}(m)$, by channel (1) are plotted versus temperature in Fig. 1 for the two reactors. These results are similar in behavior to those obtained in previous VEM studies. However, the rate data display somewhat more scatter (Fig. 2) than those obtained in previous studies and showed greater sensitivity to the seasoning procedure and history. Systematic fluctuations of $\sim 50\%$ occur. Moreover, small amounts of C_2 impurities, presumably arising from the decomposition of the seasoning film, were always present and made it unattractive to expend much effort on the measurement of reaction rates for reaction (2) which produces ethylene. Decomposition by this latter channel is accompanied by the production of radicals and traces of propane were observed in some of the high temperature experiments. Some differences (10-30%) in the apparent rate constants for propylene formation were observed between the experiments with butene getter and those using neat 1-iodopropane (Fig. 2). However, both negative and positive deviations occur and reflect mainly data scatter. We note that earlier experimental data obtained in VLPP studies of 1-iodopropane also indicates some apparent experimental complications. 2,3 In that work, apart from scatter in at least some of the data, comparable to that shown here, the observed k_1/k_2 ratio decreased (rather than the expected constancy) as the number of collisions in the reactor increased; also, rates in a 2140-collision reactor showed a larger temperature dependence than did a 19,950-collision reactor. Additionally, reaction (2), unlike reaction (1), was found to show no dependence on the pressure of added inert bath gas. Not much weight was placed on these complications by the earlier workers. We believe that although experimental complications do affect the quantitative precision of the results, that the general conclusions derived below and based on reaction (1) are substantially valid. The RRKM models employed for reactions (1) and (2) were based on those reported by Gaynor et al. (2). If molecules were effectively in the second order region, the only parameter of critical importance would be E_0 , the critical energy for reaction, together with the molecular parameters. However, 1-iodopropane only approaches the second order region under the conditions used in this study. The fraction of molecules activated above E_0 which react between collisions is $\sim 14\%$ at 691 K and increases to $\sim 19\%$ at 804 K. The molecular and activated complex parameters and vibrational frequencies used are listed in Table I. We have altered Gaynor's frequency factor and reaction path degeneracy for reaction (1), taking log A_∞ to be 13.0 and L^{\ddagger} to be 1.5 1-Iodopropane has roughly equal probabilities of being in the trans and gauche forms (6,7); these have reaction path degeneracies for reaction (1) of 2 and 1, respectively. Hence, an overall reaction path degeneracy of 1.5 seems to us more realistic than the reported value of 0.33. Calculated values of the microscopic rate constants k_F are plotted versus energy in Fig. 3. The computer simulation of the encounter process has been described elsewhere. Four models have been used to characterize the probability, p_{ij} , of a down-transition by the molecule, from energy E_j to energy E_i : 5,8 Model FE (flat exponential, i.e., $\triangle E$ > independent of E_j): $$p_{ij} = A_1 \exp(-\Delta E/\langle \Delta E \rangle); \quad \Delta E = E_i - E_i$$ Model FG (flat gaussian, i.e., ΔE_{mp} independent of E_j) : $$p_{i,i} = A_2 \exp(-(\Delta E - \Delta E_{imp})^2 / 2\sigma^2);$$ Model EB (exponentially weighted Boltzmann): $$p_{i,j} = A_3N(E_i)exp(E_i/RT)exp(-\Delta E/<\Delta E>);$$ Model GB (gaussian weighted Boltzmann): $$P_{ij} = A_4 N(E_i) exp(-E_i/RT) exp(-(\Delta E - \Delta E_m)^2/2\sigma^2);$$ The A's are normalization constants, $N(E_i)$ is the density of quantum states at energy E_i , and $\langle \Delta E \rangle$, ΔE_{mp} and σ are parameters of the models. In this calculation, σ was given the value of 0.7 ΔE_{mp} . For Models FE and FG, a few transitions can occur in principle to energy levels $E_i < 0$, and these were simply treated as elastic. Alternative treatments were explored and do not affect present conclusions. Of these models, FE has been shown to be inappropriate for surfaces that behave as near-strong colliders, as is the case here at the lower temperatures; results for this model will not be shown. Truncation of the transition probabilities for ΔE greater than 18,000 cm⁻¹ (i.e. $p_{ij} = 0$ for $\Delta E \geq 18,000$) was employed for most of the computations but gave results essentially identical to those obtained in calculations where no truncation was employed. Representative parameters of each of the models which produce a fit to the 5.9 reactor data are listed in Table 2, and the calculated probabilities of reactions per collision in a given reactor, $\bar{P}_{c}(m)$, are listed in Table 2 and presented in Fig. 1. Also shown is a calculated curve for an ideal strong collider. The parameters derived from the m = 5.9 fit were then applied to the calculation of curves for case m = 17 and comparison of these with experiment is also shown in Fig. 1. The effective average energy of down-transitions, < ΔE '> for Models EB and GB is energy dependent; therefore, in order to characterize these models, the average energy of down-transitions is presented for the case $E_j = \frac{2}{3} E_0$ (E_0 for reaction (1)). #### Discussion At lower temperatures (Fig. 1), the $P_c(m)$ values for the reactor m = 17.5 appear within experimental uncertainty to be indistinguishable from those for a true strong collider and correspond to the steady state, i.e., to $\bar{P}_c(\infty)$. The values for the m = 5.9 reactor are a little lower than the strong collider values and show more unequivocally that surface behaves as a rather efficient collider but only approaches near-strong behavior at temperatures below 700 K. Models EB and GB, which effectively reproduce strong collider behavior in the limit of very large values of the relevant parameters ($<\Delta E>$ and ΔE_{mp}) appear to give a better fit to the data (Fig. 1) at low temperatures than does FG, although the scatter in the data is large and this prohibits a decisive conclusion. Despite the experimental uncertainties, it is possible to draw some important qualitative conclusions. Once again the trend observed in previous VEM studies of decreasing step size with increasing temperature is borne out. More importantly, in its interaction with the wall, this molecule seems to be a much stronger collider than the hydrocarbon molecules previously studied by VEM in this temperature range. 4,5,8 We presume that this results from the larger polarity and stronger attractive molecular potential of the molecule. We may make a limited comparison of our results with those reported in VLPP studies of 1-iodopropane. 1,3 The highest temperature at which we were able to obtain reliable data (840 K) is a little lower than the lowest temperature (850 K) at which the VLPP results were reported. But, while Gaynor, et al. report that the rates of reactions (1) and (2) are about equal, our calculated steady state k_2/k_1 ratio (at 805 K) based on the preferred energy transfer models is much lower, 0.29 or less, as shown in Table 3. In fact, based on our experiments, 0.29 is also a maximum in our observed experimental ratios. We are uncertain as to the origin and significance of this difference. Table I. Molecular Parameters for RRKM Calculations $^{\mathbf{a}}$ | | l-iodopropane | Complex (1) | Complex (2) | |---|---|--|--------------------------------| | frequencies/cm ⁻¹ | 3100(7) | 3100(6) | 3100(7) | | | 1450(5) | 2200 | 1450(5) | | | 1150(6) | 1450(4) | 1150(4) | | | 1000(2) | 1300 | 1000(2) | | | 700 | 1150(7) | 700(2) | | | 600 | 1000 | 400 | | | 425(2) | 700(2) | 200 | | | 300 | 300 | 130(3) | | | 200 | 219(3) | 70 | | | 70 | | | | (I _A I _B I _C) ⁺ /(I _A I _B I _C) | | 2.83 | 3.09 | | L [‡] | | 1.5 | 1.0 | | | | | | | | E _o /kcal mole ⁻¹ | E _{a∞} /kcal mole ⁻¹ | $\log_{10}(A_{\infty}/s^{-1})$ | | Reaction (1) | 48.5 | 49.5 | . 13.0 | | Reaction (2) | 52.8 | 5 5.7 | 15.5 | a) Based on refs. 2 and 3, except as in text Table 2. Calculated Values of $\bar{P}_{c}(m)$ and Parameters of the Energy Transfer Models | T/K | Model | <ΔE> or ΔE _{mp} | <ΔE'> | ,
F | $c^{(5.9)^a}$ | P _c (17.5) | |-----|-------|--------------------------|-------------------|--------|---------------------|-----------------------| | 690 | FG | 3740 | 4136 | 7 | | 1.19-7 | | | EB | 1370 | 4113 ^b | } | 5.69-8 ^C | 1.27-7 | | | GB | 2165 | 3884 ^b | J | | 1.27-7 | | 805 | FG | 2730 | 3012 | 7 | | 6.38-6 | | | EB | 1335 | 2664 ^b | } | 2.62-6 | 7.07-6 | | | GB | 1895 | 2888 ^b | } | | 7.08-6 | - a) Models fitted to the experimental values for m = 5.9. - b) This quantity is energy-level dependent and was calculated for a representative value of E = $\frac{2}{3}$ E $_{0}$; the quantity increases with increase of E. - c) Signifies 5.69x10⁻⁸ Table 3. Calculated Values of k_2/k_1 | T/K | $\underline{Model\ FE(m=17.5)}$ | Model EB(m = 17.5) | |-----|---------------------------------|--------------------| | 691 | 0.14 | 0.17 | | 805 | 0.21 | 0.29 | The second of the second secon ## Bibliography - K. D. King, D. M. Golden, G. N. Spokes and S. W. Benson, Int. J. Chem. Kinet., 3, 411 (1971). - B. J. Gaynor, R. G. Gilbert and K. D. King, Chem. Phys. Lett., <u>58</u>, 591 (1978). - 3. B. J. Gaynor, Ph.D. Dissertation, University of Sydney, (1980). - 4. D. F. Kelley, L. Zalotai and B. S. Rabinovitch, Chem. Phys., <u>46</u>, 379 (1980). - M. C. Flowers, F. C. Wolters, B. D. Barton and B. S. Rabinovitch, Chem. Phys., <u>47</u>, 189 (1980). - 6. Y. Ogawa, S. Imazeki, H. Yamaguchi, H. Matsura, I. Harada and T. Shimanouchi, Bull. Chem. Soc. Japan, <u>51</u>, 748 (1978). - 7. K. Tanabe and S. Saëki, J. Mol. Struct., <u>27</u>, 79 (1975). - 8. F. C. Wolters, M. C. Flowers and B. S. Rabinovitch, J. Phys. Chem., $\underline{85}$, xxx (1981). ### Figure Captions - Figure 1. Plot of experimental and calculated values of P_C(m) for reaction (1) <u>vs</u> temperature (K) for 1-iodopropane. Experimental results: O, m = 5.9; , m = 17.5. Calculated results: curve 1, strong collider; curve 2, Models EB and GB for m = 17.5; curve 3, Model FG for m = 17.5; curve 4, calculated and experimental values for m = 5.9. Error bars show 95% confidence level. - Figure 2. Plots of $\ln A/\mathring{A} \ \underline{vs}$ time for several runs, with and without added butene. The ratio of rate constants in the two cases is given in the figure; \bigcirc , 626 K; \triangle , 694 K; \square , 828 K. Filled symbols refer to butene runs. Time is in minutes at 626 K and 694 K and in seconds at 828 K. - Figure 3. Plot of calculated values of $\log_{10} (k_E/s^{-1}) \underline{vs} E/cm^{-1}$ for reaction (1), (\bullet), and reaction (2), (x). First Welters Lital Fier Wolfers etal The second secon # ENERGETIC MATERIALS RESEARCH # DISTRIBUTION LIST | | No. Copies | | No. Copies | |--|------------|---|------------| | Assistant Secretary of the
Navy (R, E, and S)
Attn: Dr. R.E. Reichenbach | 1 | AFATL
Eglin AFB, FL 32542
Attn: Dr. Otto K. Heiney | 1 | | Room 5E787
Pentagon
Washington, DC 20350 | | AFRPL
Code PACC
Edwards AFB, CA 93523 | 1 | | Office of Naval Research Code 473 | 10 | Attn: Mr. W. C. Andrepont | • | | Arlington, VA 22217
Attn: Dr. R. Miller | | AFRPL
Code CA
Edwards AFB, CA 93523 | 1 | | Office of Naval Research
Code 200B | 1 | Attn: Dr. R. R. Weiss | | | Arlington, VA 22217
Attn: Dr. J. Enig | | Code AFRPL MKPA
Edwards AFB, CA 93523
Attn: Mr. R. Geisler | 1 | | Office of Naval Research
Code 260
Arlingon, VA 22217
Attn: Mr. D. Siegel | 1 | Code AFRPL MKPA
Edwards AFB, CA 93523
Attn: Dr. F. Roberto | 1 | | Office of Naval Research Western Office 1030 East Green Street Pasadena, CA 91106 Attn: Dr. T. Hall | 1 . | AFSC
Andrews AFB, Code DLFP
Washington, DC 20334
Attn: Mr. Richard Smith | 1 | | Office of Naval Research Eastern Central Regional Office 495 Summer Street Boston, MA 02210 Attn: Dr. L. Peebles | 2 | Air Force Office of
Scientific Research
Directorate of Chemical &
Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332 | 1 | | Dr. A. Wood | • | Air Force Office of Scientific Research | 1 | | Office of Naval Research San Francisco Area Office One Hallidie Plaza Suite 601 San Francisco, CA 94102 Attn: Dr. P. A. Miller | 1 | Directorate of Aero-
space Sciences
Bolling Air Force Base
Washington, DC 20332
Attn: Dr. L. H. Caveny | | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 . | Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301
Attn: Dr. V. J. Keenan | 1 | | | No. Copies | | No. Copies | |---|------------|--|------------| | Army Ballistic Research Labs
Code DRDAR-BLP
Aberdeen Proving Ground, MD
21005 | 1 | Hercules Inc. Eglin AFATL/DLDL Eglin AFB, FL 32542 Attn: Or. Ronald L. Simmons | 1 | | Attn: Mr. L. A. Watermeier Army Ballistic Research Labs ARRADCOM Code DRDAR-BLP Aberdeen Proving Ground, MD | 1 | Hercules Inc. Magna Bacchus Works P.O. Box 98 Magna, UT 84044 Attn: Mr. E. H. DeButts | 1 | | 21005 Attn: Dr. Ingo W. May Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Abordoon Proving Ground MD | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Dr. James H. Thacher | 1 | | Aberdeen Proving Ground, MD
21005
Attn: Dr. Philip Howe | | HQ US Army Material Development
Readiness Command
Code DRCDE-DW | 1 | | Army Missile Command Code DRSME-RK Redstone Arsenal, AL 35809 Attn: Dr. R. G. Rhoades Dr. W. W. Wharton | 2 | F011 Eisenhower Avenue
Room 8N42
Alexandria, VA 22333
Attn: Mr. S. R. Matos | | | Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314
Attn: Dr. C. B. Henderson | 1 | Johns Hopkins University APL Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 20810 Attn: Mr Theodore M. Gilliland | | | Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807 Attn: Dr. David C. Sayles | 1 . | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. M. Finger | 1 | | Ballistic Research Laboratory
USA ARRADCOM
DODAR-6LP | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. R. McGuire | 1 | | Aberdeen Proving Ground, MD
21005
Attn: Dr. A. W. Barrows | | Lockheed Missiles and Space Co.
P.O. Box 504
Sunnyvale, CA 94088 | 1 | | Hercules Inc. Cumberland Aerospace Division Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502 Attn: Dr. Rocco Musso | 2 | Attn: Dr. Jack Linsk Org. 83-10 Bldg. 154 | | | | No. Copies | | No. Cop | |--|------------|--|---------| | Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304
Attn: Dr. H. P. Marshall | 1 | Naval Research Lab
Code 6100
Washington, DC 20375 | 1 | | Dept. 52-35 | | Naval Sea Systems Command
Washington, DC 20362 | 1 | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Atun: Dr. R. Rogers, WX-2 | 1 | Attn: Mr. G. Edwards, Code 62R3 Mr. J. Murrin, Code 62R2 Mr. W. Blaine, Code 62R | | | Los Alamos Scientific Lab | 1 | Naval Sea Systems Command
Washington, DC 20362 | 1 | | P.O. Box 1663
Los Alamos, NM 87545
Attn: Or. B. Craig, M Division | · | Attn: Mr. R. Beauregard
SEA 64E | | | Naval Air Systems Command
Code 330 | 1 | Naval Surface Weapons Center
Code RII | 1 | | Washington, DC 20360' Attn: Mr. R. Heitkotter Mr. R. Brown | | White Oak, Silver Spring, MD
20910
Attn: Dr. H. G. Adolph | | | Naval Air Systems Command
Code 310 | 1 | Naval Surface Weapons Center
Code R13 | 1 | | Washington, DC 20360
Attn: Dr. H. Mueller
Dr. H. Rosenwasser | | White Oak, Silver Spring, MD
20910
Attn: Dr. R. Bernecker | | | Naval Explosive Ordnance | 1 | Naval Surface Weapons Center | 1 | | Disposal Facility Indian Head, MD 20640 | | Code R10
White Oak, Silver Spring, MD
20910 | | | Attn: Lionel Dickinson
Code D | | Attn: Dr. S. J. Jacobs | | | Naval Ordnance Station
Code 5034 | . 1 | Naval Surface Weapons Center
Code R11 | 1 | | Indian Head, MD 20640
Attn: Mr. S. Mitchell | | White Oak, Silver Spring, MD
20910 | | | Naval Ordnance Station | 1 | Attn: Dr. M. J. Kamlet | | | Code PM4
Indian Head, MD 20640 | | Naval Surface Weapons Center
Code R04 | 1 | | Attn: Mr. C. L. Adams | • | White Oak, Silver Spring, MD
20910 | | | Dean of Research Naval Postgraduate School Monterey, CA 93940 Attn: Dr. William Tolles | 1 | Attn: Dr. D. J. Pastine Naval Surface Weapons Center Code R13 | ī | | Naval Research Lab | 1 | White Oak, Silver Spring, MD 20910 | | | Code 6510 Washington, DC 20375 | • | Attn: Dr. E. Zimet | | | Attn: Dr. J. Schnur | | | • | 0.20 | | No. Copies | | No. Copies | |--|------------|---|------------| | Naval Surface Weapons Center
Code R101
Indian Head, MD 20640
Attn: Mr. G. L. MacKenzie | 1 | Naval Weapons Center
Code 382
China Lake, CA 93555
Attn: D. R. Derr | 1 | | Naval Surface Weapons Center
Code R17
Indian Head, MD 20640
Attn: Or. H. Haiss | . 1 | Naval Weapons Center
Code 388
China Lake, CA 93555
Attn: Dr. R. Reed Jr. | 1 | | Naval Surface Weapons Center
Code R:1
White Cak, Silver Spring, MD
20910
Attn: Dr. K. F. Mueller | 1 | Naval Weapons Center
Code 385
China Lake, CA 93555
Attn: Dr. A. Nielsen | 1 | | Naval Surface Weapons Center
Code R16
Indian Head, MD 20640
Attn: Dr. T. D. Austin | 1 | Naval Weapons Center
Code 3858
China Lake, CA 93555
Attn: Mr. E. Martin | 1 | | Naval Surface Weapons Center
Code R122
White Oak, Silver Spring, MD | 1 | Naval Weapons Center
China Lake, CA 93555
Attn: Mr. R. McCarten | 1 | | 20910
Attn: Mr. L. Roslund | | Naval Weapons Support Center
Code 5042
Crane, Indiana 47522 | 1 . | | Naval Surface Weapons Center
Code R121
White Oak, Silver Spring, MD
20910
Attn: Mr. M. Stosz | 1 | Rohm and Haas Company
723-A Arcadia Circle
Hunsville, Alabama 35801 | 1 | | Naval Weapons Center
Code 3853 | 1 | Attn: Dr. H. Shuey Strategic Systems Project Office | . 1 | | China Lake, CA 93555
Attn: Dr. R. Atkins
Naval Weapons Center | 1 | Dept. of the Navy Room 901 Washington, DC 20376 Attn: Dr. J. F. Kincaid | ; 1 | | Code 3205
China Lake, CA 93555
Attn: Dr. L. Smith | , | Strategic Systems Project Office
Dept. of the Navy | ; 2 | | Naval Weapons Center
Code 3205
China Lake, CA 93555 | 1 | Room 1048 Washington, DC 20376 Attn: Mr. E. L. Throckmorton Mr. R. Kinert | | | Attn: Dr. C. Thelen Naval Weapons Center Code 385 China Lake, CA 93555 Attn: Dr. A. Amster | 1 | Thiokol Chemical Corp. Brigham
City
Wasatch Division
Brigham City, UT 84302
Attn: Dr. G. Thompson | 1 | | | No. Copies | | No. Copi | |--|------------|---|----------| | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. R. F. Walker | 1 | University of California
Department of Chemistry
405 Hilgard Avenue
Los Angeles, CA 90024 | 1 | | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. N. Slagg | 1 | Attn: Professor M. Nicol University of California Energy Center Mail Code B-010 | 1 | | U.S. Army Research Office
Chemistry Division
P.O. Box 12211
Research Triangle Park, NC
27709 | 1 | La Jolla, CA 92093
Attn: Prof. S.S. Penner | | | Washington State University
Dept. of Physics
Pullman, WA 99163
Attn: Professor G.D. Duvall | 1 | Dr. P. Rentzepis
Bell Laboratories
Murrary Hill N.J. 07971 | 1 | | Space Sciences, Inc.
135 West Maple Avenue
Monrovia, CA 91016
Attn: Dr. M. Farber | . 1 | University of Southern CA Department of Electrical Engineering University Park Los Angeles, CA 90007 Attn: C. Wittig MIT Dept. of Chemistry Cambridge, MA 02139 Attn: Prof. John Deutsch | 1 | | SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: Mr. M. Hill | 1 | | 1 | | Office of Naval Research
Code 421
Arlington, VA 22217
Attn: Dr. B. Junker | 1 . | | | | The Johns Hopkins University
Department of Chemistry
Balitmore, MD 21218
Attn: Dr. Joyce J. Kaufman | 1 | | | | University of California
Department of Chemistry
Berkeley, CA 94720
Attn: Professor Y.T. Lee | 1 | | | | Office of Naval Research
Code 472
Arlington, VA 22217
Attn: Dr. G. Neece | 1 | | |